Author bio

Andrew S. Tanenbaum

Andrew S. Tanenbaum - book author

Andrew S. Tanenbaum is the author of books: Computer Networks, Modern Operating Systems, Operating Systems Design and Implementation, Structured Computer Organization, Distributed Systems: Principles and Paradigms, Distributed Operating Systems, Structured Computer Organization / Modern Operating Systems (2nd International Edition) / C Programming Language (2nd Revised Edition), Distributed Systems. Principles and Paradigms, Réseaux, Systèmes d'exploitation


Author books

#
Title
Description
01
For courses in computer networking or introductions to networking at both the undergraduate and graduate level in computer science, engineering, CIS, MIS, and business departments. In this revision, the author takes a structured approach to explaining how networks function.
02
For software development professionals and computer science students, Modern Operating Systems gives a solid conceptual overview of operating system design, including detailed case studies of Unix/Linux and Windows 2000.

What makes an operating system modern? According to author Andrew Tanenbaum, it is the awareness of high-demand computer applications--primarily in the areas of multimedia, parallel and distributed computing, and security. The development of faster and more advanced hardware has driven progress in software, including enhancements to the operating system. It is one thing to run an old operating system on current hardware, and another to effectively leverage current hardware to best serve modern software applications. If you don't believe it, install Windows 3.0 on a modern PC and try surfing the Internet or burning a CD.

Readers familiar with Tanenbaum's previous text, Operating Systems, know the author is a great proponent of simple design and hands-on experimentation. His earlier book came bundled with the source code for an operating system called Minux, a simple variant of Unix and the platform used by Linus Torvalds to develop Linux. Although this book does not come with any source code, he illustrates many of his points with code fragments (C, usually with Unix system calls).

The first half of Modern Operating Systems focuses on traditional operating systems concepts: processes, deadlocks, memory management, I/O, and file systems. There is nothing groundbreaking in these early chapters, but all topics are well covered, each including sections on current research and a set of student problems. It is enlightening to read Tanenbaum's explanations of the design decisions made by past operating systems gurus, including his view that additional research on the problem of deadlocks is impractical except for "keeping otherwise unemployed graph theorists off the streets."

It is the second half of the book that differentiates itself from older operating systems texts. Here, each chapter describes an element of what constitutes a modern operating system--awareness of multimedia applications, multiple processors, computer networks, and a high level of security. The chapter on multimedia functionality focuses on such features as handling massive files and providing video-on-demand. Included in the discussion on multiprocessor platforms are clustered computers and distributed computing. Finally, the importance of security is discussed--a lively enumeration of the scores of ways operating systems can be vulnerable to attack, from password security to computer viruses and Internet worms.

Included at the end of the book are case studies of two popular operating systems: Unix/Linux and Windows 2000. There is a bias toward the Unix/Linux approach, not surprising given the author's experience and academic bent, but this bias does not detract from Tanenbaum's analysis. Both operating systems are dissected, describing how each implements processes, file systems, memory management, and other operating system fundamentals.

Tanenbaum's mantra is simple, accessible operating system design. Given that modern operating systems have extensive features, he is forced to reconcile physical size with simplicity. Toward this end, he makes frequent references to the Frederick Brooks classic The Mythical Man-Month for wisdom on managing large, complex software development projects. He finds both Windows 2000 and Unix/Linux guilty of being too complicated--with a particular skewering of Windows 2000 and its "mammoth Win32 API." A primary culprit is the attempt to make operating systems more "user-friendly," which Tanenbaum views as an excuse for bloated code. The solution is to have smart people, the smallest possible team, and well-defined interactions between various operating systems components. Future operating system design will benefit if the advice in this book is taken to heart. --Pete Ostenson

03
Operating Systems Design and Implementation, 3e , is ideal for introductory courses on computer operating systems. Written by the creator of Minux, professional programmers will now have the most up-to-date tutorial and reference available today. Revised to address the latest version of MINIX (MINIX 3), this streamlined, simplified new edition remains the only operating systems text to first explain relevant principles, then demonstrate their applications using a Unix-like operating system as a detailed example. It has been especially designed for high reliability, for use in embedded systems, and for ease of teaching.
04
Completely updated, this book explains how computer designers can follow the structured model to develop efficient hardware and software systems

New information has been included on UNIX, OS/2, INTEL 8088/80286/80386, Motorola 68000/68020/68030 and RISC machine. The operation of a typical IBM PC clone is now described in detail at the chip level.
05
Virtually every computing system today is part of a distributed system. Programmers, developers, and engineers need to understand the underlying principles and paradigms as well as the real-world application of those principles. Now, internationally renowned expert Andrew S. Tanenbaum – with colleague Martin van Steen – presents a complete introduction that identifies the seven key principles of distributed systems, with extensive examples of each.

Adds a completely new chapter on architecture to address the principle of organizing distributed systems. Provides extensive new material on peer-to-peer systems, grid computing and Web services, virtualization, and application-level multicasting. Updates material on clock synchronization, data-centric consistency, object-based distributed systems, and file systems and Web systems coordination.

For all developers, software engineers, and architects who need an in-depth understanding of distributed systems.
06
As distributed computer systems become more pervasive, so does the need for understanding how their operating systems are designed and implemented. Andrew S. Tanenbaum's Distributed Operating Systems fulfills this need. Representing a revised and greatly expanded Part II of the best-selling Modern Operating Systems, it covers the material from the original book, including communication, synchronization, processes, and file systems, and adds new material on distributed shared memory, real-time distributed systems, fault-tolerant distributed systems, and ATM networks. It also contains four detailed case studies: Amoeba, Mach, Chorus, and OSF/DCE. Tanenbaum's trademark writing provides readers with a thorough, concise treatment of distributed systems.